Extensions 1→N→G→Q→1 with N=C2xC23.D7 and Q=C2

Direct product G=NxQ with N=C2xC23.D7 and Q=C2
dρLabelID
C22xC23.D7224C2^2xC2^3.D7448,1292

Semidirect products G=N:Q with N=C2xC23.D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC23.D7):1C2 = C2xC23.1D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):1C2448,488
(C2xC23.D7):2C2 = C23.44D28φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):2C2448,489
(C2xC23.D7):3C2 = C24.12D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):3C2448,490
(C2xC23.D7):4C2 = C24.13D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):4C2448,491
(C2xC23.D7):5C2 = C24.14D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):5C2448,493
(C2xC23.D7):6C2 = C23.16D28φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):6C2448,495
(C2xC23.D7):7C2 = C23.28D28φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):7C2448,747
(C2xC23.D7):8C2 = C2xC23:Dic7φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):8C2448,753
(C2xC23.D7):9C2 = C24.18D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):9C2448,754
(C2xC23.D7):10C2 = C24.19D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):10C2448,755
(C2xC23.D7):11C2 = C24.20D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):11C2448,756
(C2xC23.D7):12C2 = C24.21D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):12C2448,757
(C2xC23.D7):13C2 = C25.D7φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):13C2448,781
(C2xC23.D7):14C2 = C2xD7xC22:C4φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):14C2448,937
(C2xC23.D7):15C2 = C24.24D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):15C2448,939
(C2xC23.D7):16C2 = C2xD14.D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):16C2448,941
(C2xC23.D7):17C2 = C2xDic7.D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):17C2448,944
(C2xC23.D7):18C2 = C24.31D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):18C2448,948
(C2xC23.D7):19C2 = C24.32D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):19C2448,1040
(C2xC23.D7):20C2 = C24.33D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):20C2448,1044
(C2xC23.D7):21C2 = C24.35D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):21C2448,1046
(C2xC23.D7):22C2 = C2xC23.23D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):22C2448,1242
(C2xC23.D7):23C2 = C2xD4xDic7φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):23C2448,1248
(C2xC23.D7):24C2 = C2xC23.18D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):24C2448,1249
(C2xC23.D7):25C2 = C2xC28.17D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):25C2448,1250
(C2xC23.D7):26C2 = C24.38D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):26C2448,1251
(C2xC23.D7):27C2 = C2xC23:D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):27C2448,1252
(C2xC23.D7):28C2 = C2xC28:2D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):28C2448,1253
(C2xC23.D7):29C2 = C2xDic7:D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7):29C2448,1255
(C2xC23.D7):30C2 = C24:7D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):30C2448,1257
(C2xC23.D7):31C2 = C24.42D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):31C2448,1259
(C2xC23.D7):32C2 = C2xC24:D7φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7):32C2448,1293
(C2xC23.D7):33C2 = C2xC4xC7:D4φ: trivial image224(C2xC2^3.D7):33C2448,1241

Non-split extensions G=N.Q with N=C2xC23.D7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC23.D7).1C2 = C24.D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7).1C2448,83
(C2xC23.D7).2C2 = C24.2D14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7).2C2448,84
(C2xC23.D7).3C2 = C22:C4xDic7φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).3C2448,475
(C2xC23.D7).4C2 = C24.44D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).4C2448,476
(C2xC23.D7).5C2 = C23.42D28φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).5C2448,477
(C2xC23.D7).6C2 = C24.3D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).6C2448,478
(C2xC23.D7).7C2 = C24.4D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).7C2448,479
(C2xC23.D7).8C2 = C24.46D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).8C2448,480
(C2xC23.D7).9C2 = C23:Dic14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).9C2448,481
(C2xC23.D7).10C2 = C24.6D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).10C2448,482
(C2xC23.D7).11C2 = C24.7D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).11C2448,483
(C2xC23.D7).12C2 = C24.47D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).12C2448,484
(C2xC23.D7).13C2 = C24.8D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).13C2448,485
(C2xC23.D7).14C2 = C24.9D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).14C2448,486
(C2xC23.D7).15C2 = C24.10D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).15C2448,487
(C2xC23.D7).16C2 = C24.62D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).16C2448,744
(C2xC23.D7).17C2 = C24.63D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).17C2448,745
(C2xC23.D7).18C2 = C23.27D28φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).18C2448,746
(C2xC23.D7).19C2 = C2xC23.11D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).19C2448,933
(C2xC23.D7).20C2 = C2xC22:Dic14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).20C2448,934
(C2xC23.D7).21C2 = C2xC23.D14φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).21C2448,935
(C2xC23.D7).22C2 = C23:2Dic14φ: C2/C1C2 ⊆ Out C2xC23.D7112(C2xC2^3.D7).22C2448,936
(C2xC23.D7).23C2 = C2xC28.48D4φ: C2/C1C2 ⊆ Out C2xC23.D7224(C2xC2^3.D7).23C2448,1237
(C2xC23.D7).24C2 = C4xC23.D7φ: trivial image224(C2xC2^3.D7).24C2448,743
(C2xC23.D7).25C2 = C2xC23.21D14φ: trivial image224(C2xC2^3.D7).25C2448,1239

׿
x
:
Z
F
o
wr
Q
<